
Java Reference Guide | Java Database Connectivity (JDBC) API | InformIT

http://www.informit.com/guides/content.aspx?g=java&seqNum=37[03/06/2013 10:07:16 a.m.]

Home > Articles > Programming > Java

Java Reference Guide
Hosted by Steven Haines

Java Database Connectivity (JDBC) API
Last updated Mar 14, 2003.

The Java Database Connectivity (JDBC) API provides an interface to access a wide range of
data sources, including Structured Query Language (SQL) based databases all the way down to
flat files (text files.) Because of its acceptance throughout the Java industry, the JDBC API has
become part of the core Java API; it is now at version 3.0.

Several years back, Microsoft provided a data interchange standard, called the Open Database
Connectivity (ODBC) interface, that provided application developers wishing to use databases
with an invaluable service. Before an open standard was developed, an application developer
had to either obtain source code libraries to talk to specific database systems, or write source
code that knew how to talk to each and every database the application could support. With the
advent of the ODBC interface, database developers could create generic ODBC drivers to talk to
their respective databases, and then application developers' code talked to ODBC, which routed
the request.

Configuring an application to work with a database is simple: the user installs a database and
sets up a data source (a name that ODBC uses to find the database), then points the database
application to that data source.

Java extends the ODBC model. The Java Database Connectivity (JDBC) model supports ODBC-
based databases and provides a truly platform-independent database access model.

JDBC has four primary pieces, used for each database access phase:

DriverManager: the DriverManager class loads and configures a database driver on your
client

Connection: the Connection class performs connection and authentication to a database
server

Statement / PreparedStatement: the Statement and PreparedStatement classes send SQL
statements to the database engine for preprocessing and eventually execution

ResultSet: the ResultSet class allows for the inspection of results from Statement
executions

At the core of JDBC is the Structured Query Language (SQL). InformIT has a plethora of articles
describing how to write and tune SQL statements, so I will refer you to those resources for more
guidance.

The first step in using JDBC is acquiring a driver for your database. Your database probably
came with a JDBC driver or an ODBC driver, maybe both. If the database already has its JDBC
driver you are set. Otherwise, you can use an ODBC-JDBC bridge to make use of the ODBC
drivers; note that there are extreme performance degradations in using the ODBC-JDBC bridge.
Furthermore, you can use a third party JDBC driver written specifically for your database. You
can find links to JDBC drivers at Sun Microsystems Web site at:

http://servlet.java.sun.com/products/jdbc/drivers

JDBC drivers come in four types (numbered from 1 to 4):

1. JDBC-ODBC Bridge plus ODBC Driver: provides a JDBC interface to an ODBC driver

2. Native API-partly Java driver: converts JDBC calls into calls to the client API for your specific

Guide Contents Print < Back Page 96 of 650 Next >

Related Resources PodcastsBlogsArticlesStore

 See All Related Store Items

Scala Fundamentals LiveLessons
(Video Training), Downloadable
Version
By Dan Rosen

 $119.99

Java Tutorial, The: A Short Course
on the Basics, 5th Edition
By Sharon Biocca Zakhour, Sowmya Kannan,

Raymond Gallardo

 $31.99

Java Tutorial, The: A Short Course
on the Basics, 5th Edition
By Sharon Biocca Zakhour, Sowmya Kannan,

Raymond Gallardo

 $39.99

the trusted technology learning source

Your CartAccount Sign In

Topics Store Authors Safari Books Online Imprints Explore

http://www.informit.com/index.aspx
http://www.informit.com/articles/index.aspx
http://www.informit.com/articles/index.aspx?st=60206
http://www.informit.com/articles/index.aspx?st=60209
http://www.informit.com/authors/bio.aspx?a=d07f5092-99eb-4de8-97a4-a876a60b3724
http://www.informit.com/authors/bio.aspx?a=d07f5092-99eb-4de8-97a4-a876a60b3724
http://servlet.java.sun.com/products/jdbc/drivers
javascript:void(0);
javascript:void(0);
http://www.informit.com/articles/printerfriendly.aspx?g=java
http://www.informit.com/guides/printerfriendly.aspx?g=java
http://www.informit.com/guides/content.aspx?g=java&seqNum=36
http://www.informit.com/guides/content.aspx?g=java&seqNum=38
http://www.informit.com/store/index.aspx?st=60209
http://www.informit.com/store/scala-fundamentals-livelessons-video-training-downloadable-9780321927743
http://www.informit.com/store/scala-fundamentals-livelessons-video-training-downloadable-9780321927743
http://www.informit.com/store/scala-fundamentals-livelessons-video-training-downloadable-9780321927743
http://www.informit.com/authors/bio.aspx?a=de8c4a88-c048-41a3-8f86-54f4de4218e2
http://www.informit.com/store/scala-fundamentals-livelessons-video-training-downloadable-9780321927743
http://www.informit.com/store/java-tutorial-a-short-course-on-the-basics-9780132761994
http://www.informit.com/store/java-tutorial-a-short-course-on-the-basics-9780132761994
http://www.informit.com/authors/bio.aspx?a=2fb915f1-55a2-4907-bed5-79dafa2f61ec
http://www.informit.com/authors/bio.aspx?a=b3a144c6-5ab7-47be-b77f-38019860c9c2
http://www.informit.com/authors/bio.aspx?a=e59f2c71-bd2f-42a1-bfa5-b259b02e3c69
http://www.informit.com/store/java-tutorial-a-short-course-on-the-basics-9780132761994
http://www.informit.com/store/java-tutorial-a-short-course-on-the-basics-9780132761697?w_ptgrevartcl=Java+Tutorial%2c+The%3a+A+Short+Course+on+the+Basics_1675608
http://www.informit.com/store/java-tutorial-a-short-course-on-the-basics-9780132761697
http://www.informit.com/store/java-tutorial-a-short-course-on-the-basics-9780132761697
http://www.informit.com/authors/bio.aspx?a=2fb915f1-55a2-4907-bed5-79dafa2f61ec
http://www.informit.com/authors/bio.aspx?a=b3a144c6-5ab7-47be-b77f-38019860c9c2
http://www.informit.com/authors/bio.aspx?a=e59f2c71-bd2f-42a1-bfa5-b259b02e3c69
http://www.informit.com/store/java-tutorial-a-short-course-on-the-basics-9780132761697
http://www.informit.com/store/scala-fundamentals-livelessons-video-training-downloadable-9780321927743?w_ptgrevartcl=Scala+Fundamentals+LiveLessons+(Video+Training)%2c+Downloadable+Version_2014057
http://www.informit.com/store/java-tutorial-a-short-course-on-the-basics-9780132761994?w_ptgrevartcl=Java+Tutorial%2c+The%3a+A+Short+Course+on+the+Basics_1675832
http://www.informit.com/
http://www.informit.com/
https://memberservices.informit.com/cart/buy.aspx?partner=53
https://memberservices.informit.com/my_account/login.aspx?partner=53
http://www.informit.com/topics/
http://www.informit.com/topics/
http://www.informit.com/store/
http://www.informit.com/store/
http://www.informit.com/authors/
http://www.informit.com/authors/
http://safari.informit.com/home?subpage=hometab1&cid=informit-topnav
http://safari.informit.com/home?subpage=hometab1&cid=informit-topnav
http://www.informit.com/imprint/
http://www.informit.com/imprint/
http://www.informit.com/explore/
http://www.informit.com/explore/

Java Reference Guide | Java Database Connectivity (JDBC) API | InformIT

http://www.informit.com/guides/content.aspx?g=java&seqNum=37[03/06/2013 10:07:16 a.m.]

database; requires some native code on each OS you deploy to

3. JDBC-Net pure Java driver: JDBC calls are sent in a database independent format to Java
code running on the database server that in turn translates that request to database specific
code

4. Native-protocol pure Java driver: Converts JDBC calls directly to database network calls

Type 3 and 4 drivers are preferred; types 1 and 2 act as place holders for databases that do not
yet have a full Java implementation. Once you have this DriverManager you use it to establish a
connection with the database through its getConnection() method. The getConnection() method
prototypes are defined as follows:

The URL String is a database vendor-specific string that tells the JDBC driver what database to
connect to and how to establish that connection. The getConnection() method returns a
Connection object. For example, if you were using an Oracle database, the connection would
look something like the following:

Where the URL is composed of the main protocol "jdbc", the sub-protocol "oracle:thin", the host
name "mydbserver", the port "1521", and the database SID name "mysid". The connection is
made as user name "scott" and password "tiger". Again, the JDBC URLs are driver-specific; this
example used the Oracle thin driver (type 4 driver) that ships with Oracle.

Connection is an interface that the JDBC specific driver implements. The primary functionality
that a Connection provides you as an application developer is the ability to create Statements
and PreparedStatements.

A Statement is used to send a query to a database: the Statement is compiled into a format to
send to the database, it is sent to the database, its result is obtained, and the Statement is
discarded.

A PreparedStatement follows the same steps the first time it is executed, but then the
statement is saved for subsequent use in its compiled state. The PreparedStatement's
parameters are specified as variables; it is storing the compiled structure of the statement and
not the statement itself. As a result, you can fill in the parameters when using the statement, so
that its use is specific to your requirements.

A Statement can be created by calling the Connection class's createStatement() method:

You can create a generic Statement object or one that will generate ResultSet objects with the
given type and concurrency. Similarly, you create a PreparedStatement by calling the
Connection class's prepareStatement() method:

You can create a PreparedStatement to service a specified SQL statement and, optionally, can
specify the type of ResultSet to be generated. The following example creates a
PreparedStatement:

Again, PreparedStatement is an interface that the JDBC specific driver implements. Once you
have built the PreparedStatement, you can execute the query using one of the following
execute methods:

To query a database, you call the executeQuery() method, which returns an object that
implements the ResultSet interface. The following shows how you would execute the

getConnection(String url)
getConnection(String url, Properties info)
getConnection(String url, String user, String password)

Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@mydbserver:1521:mysid",
 "scott", "tiger");

Statement createStatement()
Statement createStatement(int resultSetType, int resultSetConcurrency)

PreparedStatement prepareStatement(String sql)
PreparedStatement prepareStatement(String sql,
int resultSetType, int resultSetConcurrency)

try {
 PreparedStatement preparedStatement = conn.prepareStatement(
 "SELECT * FROM HomePhoneNumbers WHERE name = ?");
}
catch (SQLException e) {
 e.printStackTrace();
}

boolean execute() Executes any kind of SQL statement
ResultSet executeQuery() Executes the SQL query in this
PreparedStatement
 object and returns the result set generated by the query
int executeUpdate() Executes the SQL INSERT, UPDATE or
 DELETE statement in this PreparedStatement object

Java Reference Guide | Java Database Connectivity (JDBC) API | InformIT

http://www.informit.com/guides/content.aspx?g=java&seqNum=37[03/06/2013 10:07:16 a.m.]

< Back Page 96 of 650 Next >

aforementioned query:

Again, the ResultSet interface is implemented by one of the JDBC specific driver classes. The
ResultSet interface is quite large, but the navigation through rows in the table is straightforward:

Once you have the ResultSet object initialized, you can traverse the list using the following
syntax:

Now the ResultSet interface defines a set of methods referred to as the getXXX methods by the
JDBC community. These methods are used for retrieving specified datatypes from either a named
or indexed column in the current row. You can retrieve data of various types, from integers to
arrays to strings.

Listing 1 puts this together into a complete example.

Listing 1. JDBCExample.java

Summary
JDBC is the Java interface to interacting with databases; it provides a simple database-agnostic
programming paradigm to access SQL-based databases. Inevitiably, in your development efforts
you will to need to read something from or write something to a database. I encourage you to
follow up this general introduction with many of the resources we have available here at
InformIT.com.

Save To Your Account

ResultSet rs = preparedStatement.executeQuery();

boolean first() JDBC 2.0 Moves the cursor to the first row in the
result set.
boolean isFirst() JDBC 2.0 Indicates whether the cursor is on the first
row
of the result set.

boolean isLast() JDBC 2.0 Indicates whether the cursor is on the last
row of the result set.
boolean last() JDBC 2.0 Moves the cursor to the last row in the result
set.
void moveToCurrentRow() JDBC 2.0 Moves the cursor to the remembered
cursor position,
 usually the current row.

void moveToInsertRow() JDBC 2.0 Moves the cursor to the insert row.
boolean next() Moves the cursor down one row from its current position.
boolean previous() JDBC 2.0 Moves the cursor to the previous row in
the result set.

while(rs.next()) {
 // Do stuff with the data
}

package com.informit.jdbc;

import java.sql.*;

public class JDBCExample {
 public static void main(String[] args) {
 try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@mydbserver:1521:mysid",

 "scott", "tiger");

 // Create a Statement
 PreparedStatement ps = conn.prepareStatement(
"SELECT state FROM HomePhoneNumbers WHERE name = ?");

 ps.setString(1, "Steve");

 ResultSet rs = ps.executeQuery();
 // Iterate through the result and print the employee names
 while (rs.next ()) {
 System.out.println("State: " + rs.getString("state"));
 }
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

http://www.informit.com/guides/content.aspx?g=java&seqNum=36
http://www.informit.com/guides/content.aspx?g=java&seqNum=38

Java Reference Guide | Java Database Connectivity (JDBC) API | InformIT

http://www.informit.com/guides/content.aspx?g=java&seqNum=37[03/06/2013 10:07:16 a.m.]

© Pearson Education, Informit. All rights reserved.
800 East 96th Street, Indianapolis, Indiana 46240

About Affiliates Contact Us Jobs Legal Notice Privacy Policy Press Promotions Site Map Write for Us

http://www.informit.com/about/
http://www.informit.com/affiliates/
http://www.informit.com/about/contact_us/
http://www.informit.com/about/jobs.aspx
http://www.informit.com/about/legal.aspx
http://www.informit.com/about/privacy.aspx
http://www.informit.com/press/
http://www.informit.com/promotions/
http://www.informit.com/site_map/
http://www.informit.com/about/write_for_us.aspx

	informit.com
	Java Reference Guide | Java Database Connectivity (JDBC) API | InformIT

	NweD9nPWphdmEmc2VxTnVtPTM3AA==:
	headersearchform:
	query: Search
	input2:

